MATHEMATICS IN EVERYDAY LIFE-7

Chapter 8 : Simple Equations

ANSWER KEYS

EXERCISE 8.1

- **1.** (*i*) The sum of 4 times *x* and 7 is 16. 4x + 7 = 16
 - (*ii*) 5 subtracted from 3 times a number x gives 7. 3x - 5 = 7
 - (*iii*) One-third of *p* is 2 more than 5.

$$\frac{p}{3} = 5 + 2$$

(*iv*) One fourth of a number *x* added to 6 gives 9.

$$\frac{x}{4} + 6 = 9$$

(v) The number a divided by 6 gives 5.

$$\frac{a}{6} = 5$$

(vi) 4 subtracted from one-fourth of p gives 6.

$$\frac{p}{4} - 4 = 6$$

2. (*i*) p + 6 = 11, (p = 5) L.H.S = p + 6= 5 + 6= 11 = R.H.S

> **Yes,** the given value of *p* is the solution of given equation.

(*ii*) 4x + 9 = 12, (x = 2)L.H.S = 4x + 9 $= 4 \times 2 + 9 = 8 + 9$ = 17 $L.H.S \neq R.H.S$

> **No,** the given value of *x* is not the solution of given equation.

(*iii*) 5x - 3 = 12, (x = 3) L.H.S = 5x - 3

$$= 5 \times 3 - 3$$

= 15 - 3
= 12

Hence, L.H.S = R.H.S

Yes, the given value of *x* is the solution of given equation.

(*iv*) 2x + 3 = 17, (x = 7) L.H.S = 2x + 3 $= 2 \times 7 + 3$ = 14 + 3= 17

Mathematics In Everyday Life-7

Hence, L.H.S = R.H.S**Yes,** the given value of *x* is the solution of given

equation. (v) 7x - 2 = 11, (x = 2)

L.H.S =
$$7x - 2$$

= $7 \times 2 - 2$
= $14 - 2$

= 12

Hence, L.H.S \neq R.H.S **No**, the given value of *x* is not the solution of given equation.

- (vi) 3x + 9 = 8, (x = -1)L.H.S = 3x + 9 $= 3 \times (-1) + 9$ = -3 + 9 = 6Hence, L.H.S \neq R.H.S **No**, the given value of *x* is not the solution of given equation.
- 3. (i) 3x + 2 = 14The given equation is 3x + 2 = 14. L.H.S = R.H.S 3x + 2= 14 If x = 0, $3 \times 0 + 2 = 0 + 2 = 2$ ≠ 14 If x = 1, $3 \times 1 + 2 = 3 + 2 = 5$ ≠ 14 If x = 2, $3 \times 2 + 2 = 6 + 2 = 8$ ≠ 14 If x = 3, $3 \times 3 + 2 = 9 + 2 = 11$ ≠ 14 If x = 4, $3 \times 4 + 2 = 12 + 2 = 14$ ≠ 14 Thus, for x = 4, L.H.S = R.H.S Hence, x = 4 is the solution of given equation. (*ii*) 5m + 2 = 12

The given equation is 5m + 2 = 12. L.H.S = R.H.S= 12 5m + 2If m = 0, $5 \times 0 + 2 = 0 + 2 = 2$ ≠ 12

If m = 1, $5 \times 1 + 2 = 5 + 2 = 7$ ≠ 12 If m = 2, $5 \times 2 + 2 = 10 + 2 = 12$ = 12

Thus, for m = 2, L.H.S = R.H.S

Hence, m = 2, is the solution of given equation.

(*iii*)
$$\frac{2m}{5} = 2$$

The given equation is $\frac{2m}{5} = 2$
L.H.S = R.H.S
 $\frac{2m}{5} = 2$

2111

If
$$m = 0$$
, $\frac{2 \times 0}{5} = 0 \neq 2$
If $m = 1$, $\frac{2 \times 1}{5} = \frac{2}{5} \neq 2$
If $m = 2$, $\frac{2 \times 2}{5} = \frac{4}{5} \neq 2$
If $m = 3$, $\frac{2 \times 3}{5} = \frac{6}{5} \neq 2$
If $m = 3$, $\frac{2 \times 4}{5} = \frac{8}{5} \neq 2$
If $m = 4$, $\frac{2 \times 4}{5} = \frac{8}{5} \neq 2$
If $m = 5$, $\frac{2 \times 5}{5} = \frac{10}{5} = 2 = 2$
Thus, for $m = 5$, L.H.S = R.H.S
Hence, $m = 5$ is the solution of given equation.
(*iv*) $4x - 1 = 7$
The given equation is $4x - 1 = 7$.
L.H.S = R.H.S
 $4x - 1 = 7$
If $x = 0$, $4 \times 0 - 1 = 0 - 1 = -1 \neq 7$
If $x = 2$, $4 \times 2 - 1 = 8 - 1 = 7 = 7$
Thus, for $x = 2$, L.H.S = R.H.S
Hence, $x = 4$ is the solution of given equation.
(*v*) $3x + 4 = 19$
The given equation is $3x + 4 = 19$.
L.H.S = R.H.S
Hence, $x = 4$ is the solution of given equation.
(*v*) $3x + 4 = 19$
The given equation is $3x + 4 = 12$.
L.H.S = R.H.S
Hence, $x = 5$, $x = 4 = 6 + 4 = 10 \neq 19$
If $x = 3$, $3 \times 0 + 4 = 0 + 4 = 4 \neq 19$
If $x = 3$, $3 \times 3 + 4 = 9 + 4 = 13 \neq 19$
If $x = 5$, $3 \times 5 + 4 = 15 + 4 = 19 = 19$
Thus, for $x = 5$, L.H.S = R.H.S
Hence, $x = 5$ is the solution of given equation.
(*vi*) $\frac{x}{2} + 6 = 9$
The given equation is $\frac{x}{2} + 6 = 9$.
L.H.S = R.H.S
Hence, $x = 5$ is the solution of given equation.
(*vi*) $\frac{x}{2} + 6 = 9$
The given equation is $\frac{x}{2} + 6 = 9$.
L.H.S = R.H.S
Hence, $x = 5$ is the solution of given equation.
(*vi*) $\frac{x}{2} + 6 = 9$
If $x = 1$, $\frac{1}{2} + 6 = 6\frac{1}{2} \neq 9$
If $x = 3$, $\frac{3}{2} + 6 = 7\frac{1}{2} \neq 9$
If $x = 3$, $\frac{3}{2} + 6 = 7\frac{1}{2} \neq 9$
If $x = 4$, $\frac{4}{2} + 6 = 2 + 6 = 8 \neq 9$

If x = 5, $\frac{5}{2} + 6 = 8\frac{1}{2}$ ≠ 9 If x = 6, $\frac{6}{2} + 6 = 3 + 2 = 9 = 9$ Thus, for x = 6, L.H.S = R.H.S Hence, x = 6 is the solution of given equation. (*vii*) 2m - 7 = 1The given equation is 2m - 7 = 1. L.H.S = R.H.S2m - 1= 1 If m = 0, $2 \times 0 - 7 = -7$ ≠ 1 If m = 1, $2 \times 1 - 7 = -5$ ≠ 1 If m = 2, $2 \times 2 - 7 = -3$ ≠ 1 If m = 3, $2 \times 3 - 7 = -1$ ≠ 1 If m = 4, $2 \times 4 - 7 = 1$ = 1 Thus, for m = 4, L.H.S = R.H.S Hence, m = 4 is the solution of given equation. (*viii*) 2p - 4 = 6The given equation is 2p - 2 = 6. L.H.S = R.H.S= 6 2p – 2 If p = 0, $2 \times 0 - 4 = 0 - 4 = -4$ ≠ 6 If p = 1, $2 \times 1 - 4 = 2 - 4 = -2$ ≠ 6 $2 \times 2 - 4 = 4 - 4 = 0$ If p = 2, ≠ 6 If p = 3, $2 \times 3 - 4 = 6 - 4 = 2$ ≠ 6 If p = 4, $2 \times 4 - 4 = 8 - 4 = 4$ ≠ 6 $2 \times 5 - 4 = 10 - 4 = 6$ If p = 5, = 6 Thus, for p = 5, L.H.S = R.H.S Hence, p = 5 is the solution of given equation. (ix) 2x - 3 = 11The given equation is 2x - 3 = 11. L.H.S = R.H.S2x - 3= 11 $2 \times 0 - 3 = 0 - 3 = -3$ If x = 0, *≠* 11 If x = 1, $2 \times 1 - 3 = 2 - 3 = -1$ ≠ 11 If x = 2, $2 \times 2 - 3 = 4 - 3 = 1$ ≠ 11 If x = 3, $2 \times 3 - 3 = 6 - 3 = 3$ ≠ 11 If x = 4, $2 \times 4 - 3 = 8 - 3 = 5$ ≠ 11 $2 \times 5 - 3 = 10 - 3 = 7$ If x = 5, *≠* 11 If x = 6, $2 \times 6 - 3 = 12 - 3 = 9$ ≠ 11 If x = 7, $2 \times 7 - 3 = 14 - 3 = 11$ = 11 Thus, for x = 7, L.H.S = R.H.S Hence, x = 7 is the solution of given equation. (x) 2x - 3 = 5The given equation is 2x - 3 = 5. L.H.S = R.H.S2x - 3= 5 If x = 0, $2 \times 0 - 3 = 0 - 3 = -3$ ≠ 5 If x = 1, $2 \times 1 - 3 = 2 - 3 = -1$ ≠ 5 If x = 2, $2 \times 2 - 3 = 4 - 3 = 1$ ≠ 5 If x = 3, $2 \times 3 - 3 = 6 - 3 = 3$ ≠ 5 If x = 4, $2 \times 4 - 3 = 8 - 3 = 5$ = 5 Thus, for x = 4, L.H.S = R.H.S Hence, x = 4 is the solution of given equation.

4. (*i*) 2*x* = 16 "Twice a number is 6."

- (*ii*) 3(x + 6) = 30"Three times sum of a number and 6 is equals 30."
- (*iii*) x + 4 = 11"4 added to a number gives 11."
- (*iv*) 7p + 7 = 70"Seven more than seven times a number is seventy."
- $(v) \quad \frac{3}{4}x = 6$

5.

"Three fourth of a number is 6."

(*vi*) 3m - 4 = 17

"4 less than 3 times a number is seventeen."

(i)
$$x - 6 = 11$$

 $x - 6 + 6 = 11 + 6$ (Adding 6 to both sides)
 $\Rightarrow x = 17$
To check: For $x = 17$,
L.H.S = $x - 6 = 17 - 6 = 11$
L.H.S = R.H.S
Hence, $x = 17$, is the solution of given equation.

(*ii*) 2x - 3 = 13 $\Rightarrow 2x - 3 + 3 = 13 + 3$ (Adding 3 to both sides) 2x = 16 \Rightarrow $\frac{2x}{2} = \frac{16}{2}$ (Dividing both sides by 2) \Rightarrow x = 8**To check:** For x = 8, L.H.S = $2x - 3 = 2 \times 8 - 3 = 16 - 3$ = 13 L.H.S = R.H.SHence, x = 8, is the solution of given equation. (*iii*) 12p - 12 = 36 \Rightarrow 12p - 12 + 12 = 36 + 12 (Adding 12 to both sides) 12p = 48 \Rightarrow $\frac{12p}{12} = \frac{48}{12}$ (Dividing both sides by 12)

p = 4To check: For p = 4, L.H.S = $12p - 12 = 12 \times 4 - 12$ = 48 - 12 = 36L.H.S = R.H.S

Hence, p = 4, is the solution of given equation.

(*iv*)
$$\frac{3x}{2} = 9$$

 $\Rightarrow \frac{3x}{2} \times 2 = 9 \times 2$ (Multiplying both sides by 2)
 $\Rightarrow 3x = 18$

Mathematics In Everyday Life-7

 $\Rightarrow \frac{3x}{3} = \frac{18}{3}$ (Dividing both sides by 3) x = 6 \Rightarrow To check: For x = 6, L.H.S = $\frac{3x}{2} = \frac{3 \times 6}{2} = \frac{12}{2} = 6 = \text{R.H.S}$ Thus, L.H.S = R.H.S Hence, x = 6, is the solution of given equation. (v) 5x + 3 = 13 \Rightarrow 5x + 3 - 3 = 13 - 3 (Subtracting 3 from both sides) 5x = 10 $\frac{5x}{5} = \frac{10}{5}$ (Dividing both sides by 5) \Rightarrow x = 2 \Rightarrow **To check:** For x = 2, L.H.S = $5x + 3 = 5 \times 2 + 3 = 10 + 3$ = 13Thus, L.H.S = R.H.S Hence, x = 2, is the solution of given equation. (*vi*) $\frac{1}{2}x + 9 = 14$ $\Rightarrow \quad \frac{1}{2}x + 9 - 9 = 14 - 9$ (Subtracting 9 from both sides) $\Rightarrow \frac{1}{2}x = 5$ $\Rightarrow \frac{1}{2}x \times 2 = 5 \times 2$ (Multiplying both sides by 2) x = 10 \rightarrow **To check:** For x = 10L.H.S = $\frac{1}{2}x + 9$ $=\frac{1}{2} \times 10 + 9$ = 5 + 9 = 14Thus, L.H.S = R.H.S Hence, x = 10, is the solution of given equation. (*vii*) $y - \frac{13}{2} = 6$ $\Rightarrow y - \frac{13}{2} + \frac{13}{2} = 6 + \frac{13}{2}$ (Adding $\frac{13}{2}$ to both sides) $y = \frac{25}{2}$ **To check:** For $y = \frac{25}{2}$ L.H.S = $y - \frac{13}{2} = \frac{25}{2} - \frac{13}{2} = \frac{12}{2}$

Thus, L.H.S = R.H.S Hence, $y = \frac{25}{2}$, is the solution of given equation. (*viii*) 3x - 4 = 8 - x \Rightarrow 3x - 4 + x = 8 - x + x(Adding *x* to both sides) 4x - 4 = 8 \Rightarrow 4x - 4 + 4 = 8 + 4 (Adding 4 to both sides) 4x = 12 \Rightarrow $\frac{4x}{4} = \frac{12}{4}$ (Dividing both sides by 4) \Rightarrow \Rightarrow x = 3**To check:** For x = 3, L.H.S = 3x - 4 $= 3 \times 3 - 4 = 9 - 4 = 5$ R.H.S = 8 - x = 8 - 3 = 5Thus, L.H.S = R.H.S Hence, x = 3, is the solution of given equation. $(ix) \frac{x}{5} + 1 = 4$ $\Rightarrow \quad \frac{x}{5} + 1 - 1 = 4 - 1$ (Subtracting 1 from both sides) $\Rightarrow \frac{x}{5} = 3$ $\Rightarrow \quad \frac{x}{5} \times 5 = 3 \times 5 \text{ (Multiplying both sides by 5)}$ \Rightarrow x = 15**To check:** For x = 15, L.H.S = $\frac{x}{5} + 1 = \frac{15}{5} + 1$ = 4Thus, L.H.S = R.H.S Hence, x = 15, is the solution of given equation. $(x) \quad \frac{x}{2} + \frac{x}{3} = 1$ $\Rightarrow \frac{3 \times x + 2 \times x}{6} = 1 \quad \text{(L.C.M of 2 and 3 is 6)}$ $\Rightarrow \frac{3x+2x}{6} = 1$ $\Rightarrow \frac{5x}{6} = 1$ $\Rightarrow \frac{5x}{6} \times 6 = 1 \times 6$ (Multiplying both sides by 6) \Rightarrow 5x = 6 $\Rightarrow \frac{5x}{5} = \frac{6}{5}$ (Dividing both sides by 5)

 $\Rightarrow \qquad x = \frac{6}{5}$ **To check:** For $x = \frac{6}{5}$ L.H.S = $\frac{x}{2} + \frac{x}{3} = \frac{5x}{6}$ $=\frac{5}{6}\times\frac{6}{5}$ Thus, L.H.S = R.H.S Hence, $x = \frac{6}{5}$, is the solution of given equation. (xi) 3(x + 7) = 42 $\Rightarrow \frac{3(x+7)}{3} = \frac{42}{3}$ (Dividing both sides by 3) \Rightarrow x + 7 = 14 $\Rightarrow x + 7 - 7 = 14 - 7$ (Subtracting 7 from both sides) \Rightarrow x = 7To check: For x = 7, L.H.S = 3(x + 7) = 3(7 + 7) $= 3 \times 14$ = 42 Thus, L.H.S = R.H.S Hence, x = 7, is the solution of given equation. (xii) 5x - 3 = x + 17 $\Rightarrow 5x - 3 + 3 = x + 17 + 3$ (Adding 3 to both sides) 5x = x + 20 \Rightarrow \rightarrow 5x - x = x + 20 - x(Subtracting *x* from both sides) 4x = 20 \Rightarrow $\frac{4x}{4} = \frac{20}{4}$ (Dividing both sides by 4) \Rightarrow r = 5 \Rightarrow **To check:** For x = 5, L.H.S = 5x - 3 $= 5 \times 5 - 3$ = 25 - 3= 22 L.H.S = 22R.H.S = x + 17 = 5 + 17 = 22Thus, L.H.S = R.H.SHence, x = 5, is the solution of given equation. (xiii) $2x - \frac{1}{2} = -\frac{1}{2}$

 $\Rightarrow 2x - \frac{1}{2} + \frac{1}{2} = -\frac{1}{3} + \frac{1}{2}$ (Adding $\frac{1}{2}$ to both sides) $2x = \frac{1}{6}$ \Rightarrow $\Rightarrow \frac{2x}{2} = \frac{1}{6 \times 2}$ (Dividing both sides by 2) $\Rightarrow \qquad x = \frac{1}{12}$ **To check:** For $x = \frac{1}{12}$ L.H.S = $2x - \frac{1}{2} = 2 \times \frac{1}{12} - \frac{1}{2} = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}$ Thus, L.H.S = R.H.S Hence, $x = \frac{1}{12}$, is the solution of given equation. (xiv) 4(x-2) = 12 $\Rightarrow \frac{4(x-2)}{4} = \frac{12}{4}$ (Dividing both sides by 4) $\Rightarrow x - 2 + 2 = 3 + 2$ (Adding 2 to both sides) $\Rightarrow x = 5$ To check: For x = 5, 4(x - 2) = 4(5 - 2) $= 4 \times 3$ = 12Thus, L.H.S = R.H.S Hence, x = 5, is the solution of given equation. $(xv) \frac{x}{4} = \frac{9}{8}$ $\Rightarrow \frac{x}{4} \times 4 = \frac{9}{8} \times 4$ (Multiplying both sides by 4) $\Rightarrow \qquad x = \frac{9}{2}$ (xvi) $2y - \frac{2}{2} = -\frac{1}{2}$ $\Rightarrow 2y - \frac{2}{2} + \frac{2}{2} = -\frac{1}{2} + \frac{2}{2}$ (Adding $\frac{2}{3}$ to both sides) $\Rightarrow 2y = \frac{1}{6}$ $\Rightarrow \qquad \frac{2y}{2} = \frac{1}{6 \times 2} \quad \text{(Dividing both sides by 2)}$

 $\Rightarrow \qquad y = \frac{1}{12}$ **To check:** For $y = \frac{1}{12}$ L.H.S = $2y - \frac{2}{3} = 2 \times \frac{1}{12} - \frac{2}{3}$ $=\frac{1}{6}-\frac{2}{2}$ $=-\frac{1}{2}$ Thus, L.H.S = R.H.S Hence, $y = \frac{1}{12}$, is the solution of given equation. $(xvii) \ 3(x+2) - 2(x-1) = 11$ \Rightarrow 3x + 6 - 2x + 2 = 11 $\Rightarrow x + 8 = 11$ $\Rightarrow x + 8 - 8 = 11 - 8$ (Subtracting 8 from both sides) x = 3 \rightarrow **To check:** For x = 3L.H.S = x + 8= 3 + 8= 11 Thus, L.H.S = R.H.S Hence, x = 3, is the solution of given equation. (xviii) $\frac{x-3}{5} - 1 = 2$ $\Rightarrow \quad \frac{x-3}{5} - 1 + 1 = 2 + 1$ (Adding 1 to both sides) $\Rightarrow \frac{x-3}{5} = 3$ $\Rightarrow \frac{x-3}{5} \times 5 = 3 \times 5$ (Multiplying both sides by 5) x - 3 = 15 $\Rightarrow x - 3 + 3 = 15 + 3 \quad (Adding 3 to both sides)$ \Rightarrow x = 18 To check: For x = 18, L.H.S = $\frac{x-3}{5} - 1$ $=\frac{18-3}{5}-1$ $=\frac{15}{5}-1$ = 3 - 1 = 2Thus, L.H.S = R.H.S

Hence, x = 18, is the solution of given equation.

Mathematics In Everyday Life-7

$$\Rightarrow x - 5 = -7$$

$$\Rightarrow x = -7 + 5$$
(Transposing - 5 to R.H.S)

$$x = -2$$
6. $\frac{x}{4} + 9 = 5$

$$\Rightarrow \frac{x}{4} = 5 - 9$$
 (Transposing + 9 to R.H.S)

$$\Rightarrow \frac{x}{4} = -4$$

$$\Rightarrow \frac{x}{4} \times 4 = -4 \times 4$$
(Multiplying both sides by 4)

$$\overline{x = -16}$$
7. $3(7x - 1) = 4x + 6$
or $21x - 3 = 4x + 6$

$$\Rightarrow 21x = 4x + 6 + 3$$
(Transposing - 3 to R.H.S)

$$\Rightarrow 21x - 4x = 9$$
(Transposing 4x to L.H.S)

$$\Rightarrow 17x = 9$$

$$\frac{17x}{17} = \frac{9}{17}$$
(Dividing both sides by 17)

$$\overline{x = \frac{9}{17}}$$
8. $\frac{3}{4}(x - 2) = x - 1$

$$\Rightarrow \frac{3}{4}x - \frac{3}{2} = x - 1$$

$$\Rightarrow \frac{3}{4}x - \frac{3}{2} = x - 1$$

$$\Rightarrow \frac{3}{4}x = x + \frac{1}{2}$$
(Transposing $-\frac{3}{2}$ to R.H.S)

$$\Rightarrow -\frac{1}{4}x = \frac{1}{2}$$
(Transposing x to L.H.S)

$$\Rightarrow -\frac{1}{4}x = (-4)$$
(Multiplying both sides by - 4)
(x = -2)

9.	$x - \frac{x}{4} - \frac{1}{3} = 2 + \frac{x}{4}$
	$\Rightarrow \qquad x - \frac{x}{4} = 2 + \frac{x}{4} + \frac{1}{3}$
	(Transposing – $\frac{1}{3}$ to R.H.S)
	$\Rightarrow \qquad x - \frac{x}{4} = \frac{7}{3} + \frac{x}{4}$
	$\Rightarrow \qquad x - \frac{x}{4} - \frac{x}{4} = \frac{7}{3}$
	(Transposing $\frac{x}{4}$ to L.H.S)
	$\Rightarrow \qquad \frac{x}{2} = \frac{7}{3}$
	$\Rightarrow \qquad \frac{x}{2} \times 2 = \frac{7}{3} \times 2$
	(Multiplying both sides by 2)
	$x = \frac{1}{3}$
10.	$\frac{2x-1}{3} - 1 = \frac{x-2}{3}$
	$\Rightarrow \qquad \frac{2x-1-3}{3} = \frac{x-2}{3}$
	$\Rightarrow \qquad \frac{2x-4}{3} = \frac{x-2}{3}$
	$\Rightarrow \qquad \frac{2x-4}{3} \times 3 = \frac{x-2}{3} \times 3$
	(Multiplying both sides by 3) $\Rightarrow \qquad 2x - 4 = x - 2$
	$\Rightarrow \qquad 2x = x - 2 + 4 (\text{Transposing} - 4 \\ \text{to R.H.S})$ $\Rightarrow \qquad 2x = x + 2$
	$\Rightarrow \qquad 2x - x + 2$ $\Rightarrow \qquad 2x - x = 2 (Transposing x to L.H.S)$
11.	a + 5 (a - 1) = 36
	$\Rightarrow 5(a-1) = 30 = 6$ (Transposing 6 to R.H.S) $\Rightarrow 5(a-1) = 30$
	$\Rightarrow \qquad \frac{5(a-1)}{5} = \frac{30}{5}$
	$\Rightarrow \qquad a-1=6$ (Dividing both sides by 5)
	$\Rightarrow \qquad a = 6 + 1$ (Transposing - 1 to R.H.S)
	<i>a</i> = 7

Mathematics In Everyday Life-7

12. -3(x+2) = 9 $\Rightarrow \qquad \frac{-3(x+2)}{(-3)} = \frac{9}{(-3)}$ (Dividing both sides by - 3) x + 2 = -3 \Rightarrow x = -3 - 2 \Rightarrow (Transposing + 2 to R.H.S) x = -513. $\frac{x}{3} + \frac{x}{4} = 42$ $\frac{4x+3x}{12} = 42$ \Rightarrow (L.C.M of 3 and 4 is 12) $\frac{7x}{12} = 42$ \Rightarrow $\Rightarrow \frac{7x}{12} \times 12 = 42 \times 12$ (Multiplying both sides by 12) 7x = 504 \Rightarrow $\frac{7x}{7} = \frac{504}{7}$ \Rightarrow (Dividing both sides by 7) *x* = 72 14. $5 + \frac{1}{3}x = 2x$ $2x = 5 + \frac{x}{3}$ or \Rightarrow $2x - \frac{x}{3} = 5$ (Transposing $\frac{x}{3}$ to L.H.S) $\frac{5x}{2} = 5$ \Rightarrow $\frac{5x}{3} \times 3 = 5 \times 3$ \Rightarrow (Multiplying both sides by 3) 5x = 15 \Rightarrow $\frac{5x}{5} = \frac{15}{5}$ \rightarrow (Dividing both sides by 5) x = 3**15.** $\frac{x-3}{2} - 4 = 9$ $\frac{x-3}{2} = 9 + 4$ \Rightarrow (Transposing - 4 to R.H.S) $\frac{x-3}{2} = 13$ \Rightarrow $\Rightarrow \frac{x-3}{2} \times 2 = 13 \times 2$ (Multiplying both sides by 2)

8

x - 3 = 26 \Rightarrow x = 26 + 3(Transposing – 3 to R.H.S) x = 2916. $13 = 2(x - 5) - \overline{2}$ 2(x-5) - 2 = 13or 2(x-5) = 13 + 2 \Rightarrow (Transposing - 2 to R.H.S) 2(x-5) = 15 \Rightarrow $\frac{2(x-5)}{2} = \frac{15}{2}$ \Rightarrow (Dividing both sides by 2) $x - 5 = \frac{15}{2}$ \Rightarrow $x = \frac{15}{2} + 5$ \Rightarrow (Transposing - 5 to R.H.S) $x = \frac{25}{2}$ 17. $\frac{4-x}{3} = 6$ $\Rightarrow \qquad \frac{4-x}{3} \times 3 = 6 \times 3$ (Multiplying both sides by 3) 4 - x = 18 \Rightarrow -x = 18 - 4 \Rightarrow (Transposing 4 to R.H.S) -x = 14 x = -14**18.** $2x - 3 = \frac{1}{3}x + \frac{1}{2}$ $2x = \frac{x}{3} + \frac{1}{3} + 3$ \Rightarrow (Transposing - 3 to R.H.S) $2x = \frac{x}{3} + \frac{10}{3}$ \Rightarrow \Rightarrow $2x - \frac{x}{3} = \frac{10}{3}$ (Transposing $\frac{x}{3}$ to L.H.S) $\frac{5x}{2} = \frac{10}{2}$ \Rightarrow $\frac{5x}{3} \times 3 = \frac{10}{3} \times 3$ \Rightarrow (Multiplying both sides by 3) 5x = 10 \Rightarrow $\frac{5x}{5} = \frac{10}{5}$ (Dividing both sides by 5) \Rightarrow x = 2

19.
$$15 + \frac{1}{2}p = 3p$$

or $3p = 15 + \frac{p}{2}$
 $\Rightarrow 3p - \frac{p}{2} = 15$ (Transposing + $\frac{p}{2}$ to L.H.S)
 $\Rightarrow \frac{5p}{2} = 15$
 $\Rightarrow \frac{5p}{2} \times 2 = 15 \times 2$
(Multiplying both sides by 2)
 $\Rightarrow 5p = 30$
 $\Rightarrow \frac{5p}{5} = \frac{30}{5}$ (Dividing both sides by 5)
 $\boxed{p=6}$
20. $\frac{y-6}{2} = \frac{3-2y}{5}$
 $\Rightarrow \frac{y-6}{2} \times 2 = \frac{3-2y}{5} \times 2$
(Multiplying both sides by 2)
 $\Rightarrow (y-6) = \frac{2(3-2y)}{5}$
 $\Rightarrow 5(y-6) = \frac{2(3-2y)}{5} \times 5$
(Multiplying both sides by 5)
 $\Rightarrow 5(y-6) = 2(3-2y)$
 $\Rightarrow 5(y-6) = 2($

EXERCISE 8.3

Let the	number be <i>x</i> then	refore,
	3x + 15 = 42	
\Rightarrow	3x = 42 -	15
	(Transposing + 15 to R.H.S)
\Rightarrow	3x = 27	
\Rightarrow	$\frac{3x}{3} = \frac{27}{3}$	(Dividing both sides by 3)
	x = 9	
	.1 . 1	1

Hence, the required number is 9.

Mathematics In Everyday Life-7

1.

2. Let the number be *x*. Therefore, 2x - 13 = 192x = 19 + 13 \Rightarrow (Transposing - 13 to R.H.S) 2x = 32 \Rightarrow $\frac{2x}{2} = \frac{32}{2}$ (Dividing both sides by 2) \Rightarrow x = 16 \Rightarrow Hence, the required number is 16. Let the base angles of an isoscales triangle be *x*, 3. Therefore, $50^{\circ} + x + x = 180^{\circ}$ $50^{\circ} + 2x = 180^{\circ}$ \Rightarrow $2x = 180^\circ - 50^\circ$ \Rightarrow $2x = 130^{\circ}$ \Rightarrow $x = \frac{130^{\circ}}{2} = 65^{\circ}$ \Rightarrow Hence, the base angles are 65°. **4.** Let the Gagan's age be *x* years. Therefore, 2x + 5 = 452x = 45 - 5 \Rightarrow (Transposing + 5 to R.H.S) 2x = 40 \Rightarrow $\frac{2x}{2} = \frac{40}{2}$ (Dividing both sides by 2) \Rightarrow x = 20 years \Rightarrow Hence, Gagan's age is 20 years. 5. Let the present age of the son be *x*. Therefore, his father's age = 3xAfter 15 years, The age of son = (x + 15) years and the age of his father = (3x + 15) years Now, According to given condition, 2(x + 15) = 3x + 152x + 30 = 3x + 15 \Rightarrow 2x = 3x + 15 - 30 \Rightarrow (Transposing + 30 to R.H.S) 2x = 3x - 15 \Rightarrow 2x - 3x = -15 \Rightarrow (Transposing of + 3x to L.H.S) \Rightarrow -x = -15x = 15 \Rightarrow Hence, son's age = 15 years, and father's age = 45 years 6. Let the three consecutive even numbers be (x + 2), (x + 4) and (x + 6). Therefore, According to give condition, (x + 2) + (x + 4) + (x + 6) = 2763x + 12 = 276 \Rightarrow

$$\Rightarrow \qquad 3x = 276 - 12$$
(Transposing + 12 to R.H.S)
$$\Rightarrow \qquad 3x = 264$$

$$\Rightarrow \qquad \frac{3x}{3} = \frac{264}{3}$$
(Dividing both sides by 3)
$$\Rightarrow \qquad x = 88$$

Hence, the three consecutive even numbers are 90, 92 and 94.

7. Let the number be *x*. Therefore, According to condition,

$$\frac{1}{3}x - \frac{1}{5}x = 6$$

$$\Rightarrow \qquad \frac{5x - 3x}{15} = 6$$

$$\Rightarrow \qquad \frac{2x}{15} = 6$$

$$\Rightarrow \qquad \frac{2x}{15} \times 15 = 6 \times 15$$
(Multiplying both sides by 15)
$$\Rightarrow \qquad 2x = 90$$

$$\Rightarrow \qquad \frac{2x}{2} = \frac{90}{2}$$
 (Dividing both sides by 2)
$$\Rightarrow \qquad x = 45$$

Hence, the required number is 45.

8. Let the third side of a triangle be x. Therefore, second side = 2x

Now, the perimeter of a triangle = sum of the length of three sides.

$$\Rightarrow 18 = 6 + 2x + x$$

$$\Rightarrow 3x = 18 - 6$$

$$\Rightarrow \frac{3x}{3} = \frac{12}{3} (Dividing both sides by 3)$$

$$\Rightarrow x = 4$$

Hence, the sides of a triangle are 6 cm, 4 cm and 8 cm.

9. Let the four consecutive even numbers be (x + 2), (x + 4), (x + 6) and (x + 8). Therefore, According to given condition

$$(x + 2) + (x + 4) + (x + 6) + (x + 8) = 156$$

$$\Rightarrow 4x + 20 = 156$$

$$\Rightarrow 4x = 156 - 20$$
(Transposing + 20 to R.H.S)
$$\Rightarrow 4x = 136$$

$$\Rightarrow \frac{4x}{4} = \frac{136}{4}$$
(Dividing both sides by 4)
$$\Rightarrow x = 34$$
Hence, the four consecutive over numbers are 36

Hence, the four consecutive even numbers are 36, 38, 40 and 42.

10. Let the son's age be x year. Therefore, his father's age = (x + 40) years

After 5 years, The son's age = (x + 5) years The father's age = x + 40 + 5 = (x + 45) years Now, according to given condition, 3(x + 5) = x + 453x + 15 = x + 45 \Rightarrow 3x = x + 45 - 15 \Rightarrow (Transposing + 15 to R.H.S) 3x - x = 30 \Rightarrow (Transposing + x to L.H.S) 2x = 30 \Rightarrow $\frac{2x}{2} = \frac{30}{2}$ \Rightarrow (Dividing both sides by 2) x = 15 \Rightarrow Hence, son's age = 15 years, and Father's age = 15 + 40 = 55 years **11.** Let the Anil's present age be *x* years, Therefore, father's age = (54 - x) years Six year before, Anil's age = (x - 6) years Father's age = (54 - x) - 6 = (48 - x) years Now, According to given condition, 6(x-6) = (48-x)6x - 36 = 48 - x \Rightarrow 6x = 48 - x + 36 \Rightarrow (Transposing – 36 to R.H.S) \Rightarrow 6x = 84 - x6x + x = 84(Transposing -x to L.H.S) \Rightarrow 7x = 84 \Rightarrow $\frac{7x}{7} = \frac{84}{7}$ (Dividing both sides by 7) \Rightarrow x = 12 \Rightarrow Hence, Anil's age = 12 years Father's age = 54 - 12 = 42 years **12.** Let the number be *x*. Therefore, according to condition $\frac{(x+11)}{7} = 9$ $\frac{x+11}{7} \times 7 = 9 \times 7$ \Rightarrow (Multiplying both sides by 7) x + 11 = 63 \Rightarrow x + 11 - 11 = 63 - 11(Subtracting 11 from both sides) x = 52 \rightarrow Hence, the required number is 52.

13. Let Varad score runs be *x*.

Therefore, Rishabh scored runs = 3xAccording to given condition, x + 3x = 1924x = 192 \Rightarrow $\frac{4x}{4} = \frac{192}{4}$ (Dividing both sides by 4) \Rightarrow \Rightarrow Hence, Varad score runs = 48and Rishabh scored runs = 144 14. Let the number be *x*. Therefore, $\frac{1}{4}x = 6 + 5$ $\frac{x}{4} = 11$ \Rightarrow x = 44 \Rightarrow Hence, the required number is 44. Let the Priyanka have number of apple be *x*. 15. Therefore, 65 - 3x = 14-3x = 14 - 65 \Rightarrow (Transposing + 65 to R.H.S) -3x = -51 \Rightarrow $\frac{-3x}{-3} = \frac{-51}{-3}$ \Rightarrow (Dividing both sides by – 3) x = 17 \Rightarrow Hence, Priyanka have 17 apples. **MULTIPLE CHOICE QUESTIONS 1.** Let the number be *x*. Then, 3x - 7 = 83x = 8 + 7 (Transposing – 7 to R.H.S) \Rightarrow 3x = 15 \Rightarrow x = 5 \Rightarrow Thus, the number is 5. Hence, option (*d*) is correct. **2.** Let the number be *x*. Then. 3x + 7 = 223x = 22 - 7 \Rightarrow (Transposing + 7 to R.H.S) 3x = 15 \Rightarrow x = 5 \Rightarrow Thus, the number is 5. Hence, option (a) is correct. **3.** Let the number be *x*. Then, $3x + 5 = \frac{23}{4}$ Mathematics In Everyday Life-7

$$\Rightarrow \qquad 3x = \frac{23}{4} - 5$$
$$\Rightarrow \qquad 3x = \frac{3}{4}$$
$$\Rightarrow \qquad x = \frac{1}{4}$$

Thus, the required number is $\frac{1}{4}$.

Hence, option (*b*) is correct.

4. Let the required number be *x*. Then,

$$x + \frac{2}{3}x = 65$$

$$\Rightarrow \qquad \frac{3x + 2x}{3} = 65$$

$$\Rightarrow \qquad \frac{5x}{3} = 65$$

$$\Rightarrow \qquad 5x = 65 \times 3$$

$$\Rightarrow \qquad 5x = 195$$

$$\Rightarrow \qquad x = \frac{195}{5} = 39$$

Thus, the required number is 39. Hence, option (*c*) is correct.

5. Let the number be *x*.

Then,

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$x - \frac{2}{3}x = 20$$
$$\frac{x}{3} = 20$$

 $x = 20 \times 3$ x = 60

Thus, the required number is 60. Hence, option (*b*) is correct.

6. Let the number be *x*. Then

$$3x - x = 48$$
$$2x = 48$$

$$x = \frac{48}{2} = 24$$

48

Thus, the required number is 24. Hence, option (*a*) is correct.

7.
$$2y + 3 = 7$$

2y = 7 - 3 (Transposing + 3 to R.H.S) \Rightarrow 2y = 4 \Rightarrow

$$\Rightarrow \qquad y = \frac{4}{2} = 2$$

Hence, option (*b*) is correct.

11

8. 2x - 3 = 9 $\Rightarrow \qquad 2x = 9 + 3$ $\Rightarrow \qquad 2x = 12$ $\Rightarrow \qquad x = \frac{12}{2} = 6$

Hence, option (*a*) is correct.

9.
$$2x + \frac{x}{2} = 20$$

$$\Rightarrow \qquad \frac{5x}{2} = 20$$

$$\Rightarrow \qquad 5x = 20 \times 2$$

$$\Rightarrow \qquad 5x = 40$$

$$\Rightarrow \qquad x = \frac{40}{5} = 8$$

Hence, option (*b*) is correct.

10. Let the number be *x*.

Then,

$$\frac{x}{6} = 4$$
$$x = 4 \times 6 = 24$$

 $\Rightarrow \qquad x = 4 \times 6 = 24$ Thus, the required number is 24.

Hence, option (c) is correct.

11. Let the two consecutive odd numbers be (2x + 1) and (2x + 3). Therefore,

(2x + 1) + (2x + 3) = 40 $\Rightarrow \qquad 4x + 4 = 40$ $\Rightarrow \qquad 4x = 40 - 4$ (Transposing + 4 to R.H.S) $\Rightarrow \qquad 4x = 36$ $\Rightarrow \qquad x = \frac{36}{4} = 9$

Thus, two consecutive odd numbers are 19 and 21. The smaller odd number is 19. Hence, option (*a*) is correct.

12. Let the number be *x*.

Then,

2x + 9 = 33 $\Rightarrow 2x = 33 - 9$ (Transposing + 9 to R.H.S) $\Rightarrow 2x = 24$ $\Rightarrow x = \frac{24}{2} = 12$ Thus, the required number is 12. Hence, option (*b*) is correct. **13.** Let the number be *x*. Then,

3x + 2 = 17 3x = 17 - 2(Transposing + 2 to R.H.S)

3x = 15 \Rightarrow $x = \frac{15}{2} = 5$ \Rightarrow Thus, the required number is 5. Hence, option (*d*) is correct. **14.** Let the number be *x*. Then, $\frac{2}{5}x + 2 = 8$ $\frac{2}{5}x = 8 - 2$ (Transposing + 2 to R.H.S) \Rightarrow $\frac{2}{5}x = 6$ \Rightarrow $2x = 6 \times 5$ \Rightarrow $x = \frac{30}{2} = 15$ \Rightarrow

Thus, the required number is 15. Hence, option (*b*) is correct.

15. Let the number be *x*.

Then,

5x + 6 = 46 $\Rightarrow 5x = 46 - 6$ $\Rightarrow 5x = 40$ $\Rightarrow x = \frac{40}{5} = 8$ Thus, the number is 8.

Hence, option (*a*) is correct.

16.
$$4p - 10 = -2$$

 $\Rightarrow \qquad 4p = -2 + 10$
 $\Rightarrow \qquad 4p = 8$
 $\Rightarrow \qquad p = \frac{8}{4} = 2$

Hence, option (*c*) is correct.

MENTAL MATHS CORNER

Fill in the blank:

1. Let the number be *x*. Then,

$$x + \frac{x}{2} = 39$$

$$\Rightarrow \qquad \frac{3x}{2} = 39$$

$$\Rightarrow \qquad 3x = 39 \times 2$$

$$\Rightarrow \qquad x = \frac{39 \times 2}{3} = 26$$

Hence, A number which when added to its half gives 39. The number is **26.**

 \Rightarrow

2. $\frac{5p-1}{2} = 7$ $5p - 1 = 7 \times 2$ 5p - 1 = 14 \Rightarrow \Rightarrow 5p = 14 + 1 \Rightarrow (Transposing - 1 to R.H.S.) $p = \frac{15}{5} = 3$ \Rightarrow Hence,

If $\frac{5p-1}{2} = 7$, then the value of *p* is **3**. **3.** 15 - k = k - 1515 + 15 = k + k \Rightarrow 2k = 30 \Rightarrow

> $k = \frac{30}{2} = 15$ \Rightarrow

Hence,

The value of *k* to make the statement 15 - k = k - 15true is 15.

4. $\frac{2x+3}{5} = \frac{7}{2}$ 2(2x + 3) = 35 \Rightarrow 4x + 6 = 35 \Rightarrow 4x = 35 - 6 = 22 \Rightarrow $x = \frac{29}{4}$ \Rightarrow Thus, If $\frac{2x+3}{5} = \frac{7}{2}$, then the value of x is $\frac{29}{4}$. 5. $\frac{11x+3}{4} = 9$ 11x + 3 = 36 \Rightarrow 11x = 36 \Rightarrow 11x = 36 - 3 \Rightarrow (Transposing + 3 to R.H.S) \Rightarrow 11x = 33x = 3 \Rightarrow Hence, If $\frac{11x+3}{4} = 9$, then its root is 3. 6. If $\frac{3-x}{2} = 0$, then the value of x is 3. 7. If $\frac{15}{x} = 5$, then the value of x is 3.

Mathematics In Everyday Life-7

		3	= 2	
	If $m = 0$,	$\frac{0}{3} = 0$	≠ 2	
	If $m = 1$,	$\frac{1}{3} = \frac{1}{3}$	≠ 2	
	If $m = 2$,	$\frac{2}{3} = \frac{2}{3}$	≠ 2	
	If $m = 3$,	$\frac{3}{3} = 1$	≠ 2	
	If $m = 4$,	$\frac{4}{3} = 1\frac{1}{3}$	≠ 2	
	If $m = 5$,	$\frac{5}{3} = 1\frac{2}{3}$	≠ 2	
	If $m = 6$,	$\frac{6}{3} = 2$	= 2	
	Thus, for	m = 6, L.H.S	5 = R.H.S	
	Hence, m	= 6 is the se	olution of give	en equation.
(ii)	The given	equation is	p + 12 = 12.	_
	-	L.H.S	= R.H.S	
		<i>p</i> + 9	= 12	
	If $p = 0$,	0 + 9 = 9	≠ 12	
	If $p = 1$,	1 + 9 = 10	≠ 12	
	If $p = 2$,	2 + 9 = 11	≠ 12	
	If $p = 3$,	3 + 9 = 12	= 12	
	Thus, for	p = 3, L.H.S	= R.H.S	
	Hence, p =	= 3 is the so	lution of give	n equation.
(iii)	3p - 4 = 1	4	_	-
	The given	equation is	3p - 4 = 14.	
		L.H.S		= R.H.S
		3p – 4		= 14
	If $p = 0$,	$3 \times 0 - 4 =$	- 4	≠ 14
	If $p = 1$,	3 × 1 – 4 =	3 - 4 = -1	≠ 14
	If $p = 2$,	3 × 2 – 4 =	6 - 4 = 2	≠ 14
	If $p = 3$,	3 × 3 – 4 =	9 - 4 = 5	≠ 14
	If $p = 4$,	3 × 4 – 4 =	12 - 4 = 8	≠ 14
	If $p = 5$,	3 × 5 – 4 =	15 – 4 = 11	≠ 14
	If $p = 6$.	3 × 6 – 4 =	18 - 4 = 14	= 14

Thus, for p = 6, L.H.S = R.H.S Hence, p = 6 is the solution of given equation.

REVIEW EXERCISE

= R.H.S

= 2

1. (i) The given equation is $\frac{m}{3} = 2$.

L.H.S

т

(*iv*) $\frac{x}{3} + 5 = 7$

	0			
		L.H.S	= R.	.H.S
		$\frac{x}{3} + 5$	= 7	
	If $x = 0$,	$\frac{0}{3} + 5 = 5$	≠ 7	
	If $x = 1$,	$\frac{1}{3} + 5 = \frac{16}{3}$	≠ 7	
	If $x = 2$,	$\frac{2}{3} + 5 = \frac{17}{3}$	≠ 7	
	If $x = 3$,	$\frac{3}{3} + 5 = 6$	≠ 7	
	If $x = 4$,	$\frac{4}{3} + 5 = \frac{19}{3}$	≠ 7	
	If $x = 5$,	$\frac{5}{3} + 5 = \frac{20}{3}$	≠ 7	
	If $x = 6$,	$\frac{6}{3} + 5 = 7$	= 7	
	Thus, for :	x = 6, L.H.S = F	R.H.S	
	Hence, $x =$	= 6 is the soluti	on of given	equation.
(v)	2x - 3 = 9			-
		L.H.S	5	= R.H.S
		2x - 3	3	= 9
	If $x = 0$,	$2 \times 0 - 3 = -3$	3	≠ 9
	If $x = 1$,	$2 \times 1 - 3 = 2 - 3$	- 3 = - 1	≠ 9
	If $x = 2$,	$2 \times 2 - 3 = 4 - 3$	- 3 = 1	≠ 9
	If $x = 3$,	$2 \times 3 - 3 = 6 - $	- 3 = 3	≠ 9
	If $x = 4$,	$2 \times 4 - 3 = 8 - 3$	- 3 = 5	≠ 9
	If $x = 5$,	$2 \times 5 - 3 = 10$	- 3 = 7	≠ 9
	If $x = 6$,	$2 \times 6 - 3 = 12$	- 3 = 9	= 9
	Thus, for :	x = 6, L.H.S = I	R.H.S	
	Hence, $x =$	= 6 is the soluti	on of given	equation.
(<i>i</i>)	5m - 3 = 2	22, $(m = 5)$		
	L.H.S =	= 5 <i>m</i> – 3		
	=	= 5 × 5 – 3		
	=	= 25 - 3 = 22		
	Hence, L.H	H.S = R.H.S		
	Yes, $m = 5$	is the solution	of given e	quation.
(ii)	x - 7 = -2	2, $(x = 9)$		
	L.H.S =	x - 7 = 9 - 7 =	= 2	

Thus, L.H.S ≠ R.H.S

No, x = 9 is not the solution of given equation.

(*iii*) $\frac{1}{2}x - \frac{1}{3}x = 4$, (x = 24) L.H.S = $\frac{1}{2} \times 24 - \frac{1}{3} \times 24$ = 12 - 8 = 4 L.H.S = R.H.SYes, x = 24, is the solution of given equation. 3. (i) $2x - 2 = \frac{1}{5} - x$ $\Rightarrow 2x + x - 2 = \frac{1}{5}$ (Transposing -x to L.H.S) \Rightarrow $3x = \frac{1}{5} + 2$ (Transposing - 2 to R.H.S) $\Rightarrow 3x = \frac{11}{5}$ $\Rightarrow \qquad \frac{3x}{3} = \frac{11}{5 \times 3} \quad \text{(Dividing both sides by 3)}$ $\Rightarrow \qquad x = \frac{11}{15}$ **To check:** For $x = \frac{11}{15}$ L.H.S = $2 \times \frac{11}{15} - 2$ $=\frac{22}{15}-2$ $=\frac{-8}{15}$ R.H.S = $\frac{1}{15} - \frac{11}{15}$ $=\frac{3-11}{15}=\frac{-8}{15}$ Thus, L.H.S = R.H.S Hence, $x = \frac{11}{15}$ is the solution of given equation. (*ii*) $\frac{4}{5}x - 4 = \frac{3x}{4}$ $\frac{4}{5}x - 4 - \frac{3x}{4} = \frac{3x}{4} - \frac{3x}{4}$ (Subtracting $\frac{3x}{4}$ from both sides) $\Rightarrow \frac{16x - 15x}{20} - 4 = 0$

2.

$$\Rightarrow \frac{x}{20} = 4$$

$$\Rightarrow x = 80$$
To check: For $x = 80$
L.H.S = $\frac{4}{5} \times 80 - 4$
 $= 64 - 4 = 60$
R.H.S = $\frac{3 \times 80}{4} = 60$
Thus, L.H.S = R.H.S
Hence, $x = 80$, is the solution of given equation.
(*iii*) $\frac{x-3}{5} + 1 = -2$
 $\Rightarrow \frac{x-3}{5} = -2 - 1$
(Transposing + 1 to R.H.S)
 $\Rightarrow \frac{x-3}{5} = -3$
 $\Rightarrow x - 3 = -3 \times 5$
 $\Rightarrow x - 3 = -15$
 $\Rightarrow x = -12$
To check: For $x = -12$
L.H.S = $\frac{-12-3}{5} + 1 = -\frac{15}{5} + 1$
 $= -3 + 1 = -2$
Thus, L.H.S = R.H.S
Hence, $x = -12$, is the solution of given equation.
(*iv*) $14 = \frac{7x}{5} - 7$
or $\frac{7x}{5} - 7 = 14$
 $\Rightarrow \frac{7x}{5} - 7 + 7 = 14 + 7$
(Adding 7 to both sides)
 $\Rightarrow \frac{7x}{5} \times 5 = 21 \times 5$
 $\Rightarrow 7x = 105$
 $\Rightarrow x = \frac{105}{7} = 15$
To check: For $x = 15$
R.H.S = $\frac{7 \times 15}{5} - 7$
 $= 21 - 7 = 14$

L.H.S = R.H.S

Hence, x = 15, is the solution of given equation.

Mathematics In Everyday Life-7

(v)
$$4(3x - 5) - 5(2x - 4) = 10$$

 $\Rightarrow 12x - 20 - 10x + 20 = 10$
 $\Rightarrow 2x = 10$
 $\Rightarrow x = 5$
To check: For $x = 5$
L.H.S = $4(3 \times 5 - 5) - 5(2 \times 5 - 4)$
 $= 4 \times 10 - 5 \times 6$
 $= 40 - 30 = 10$

Hence, x = 5, is the solution of given equation.

(vi)
$$\frac{2x-5}{2} = 2x-7$$

$$2x-5 = 4x - 14$$

$$\Rightarrow 2x - 4x = -14 + 5$$

$$\Rightarrow -2x = -9$$

$$\Rightarrow x = \frac{9}{2}$$

To check: For $x = \frac{9}{2}$

$$L.H.S = \frac{2x-5}{2} = \frac{2 \times \frac{9}{2} - 5}{2}$$

$$= \frac{9-5}{2} = \frac{4}{2} = 2$$

R.H.S = $2x - 7$

$$= 2 \times \frac{9}{2} - 7 = 9 - 7 = 2$$

L.H.S = R.H.S
Hence, $x = \frac{9}{2}$, is the solution of given equation.
4. Let the first number be x.
Then, second number = $30 - x$
Now, according to condition,
 $x - (30 - x) = 4$
 $\Rightarrow x - 30 + x = 4$
 $\Rightarrow 2x - 30 = 4$
 $\Rightarrow 2x = 34$
 $\Rightarrow x = \frac{34}{2} = 17$
Hence, The number are 17 and 13.

5. Let the first number be *x*. Therefore,

$$(x-1)\frac{1}{5}+3 = \frac{1}{4}x$$
$$\Rightarrow \qquad \frac{x}{5}-\frac{1}{5}+3 = \frac{x}{4}$$

$$\Rightarrow \qquad \frac{x}{5} - \frac{x}{4} = \frac{1}{5} - \frac{3}{1}$$
$$\Rightarrow \qquad \frac{4x - 5x}{20} = \frac{1 - 15}{5}$$
$$\Rightarrow \qquad \frac{-x}{20} = -\frac{14}{5}$$
$$\Rightarrow \qquad x = \frac{14 \times 20^{4}}{5} = 56$$

Hence, The required number is 56.

6. Let the number be *x*.

l nerefore,		
	8x + 23 = 119	
\Rightarrow	8x = 119	- 23
		(Transposing +23 to R.H.S.)
\Rightarrow	8x = 96	
\Rightarrow	$x = \frac{96}{8}$	
\Rightarrow	x = 12	

- Hence, The required number is 12.
- 7. Let three consecutive even numbers be (x + 2), (x + 4) and (x + 6).

Therefore,

(x + 2) + (x + 4) + (x + 6) = 66 $\Rightarrow \quad 3x + 12 = 66$ $\Rightarrow \quad 3x = 66 - 12$ $\Rightarrow \quad 3x = 54$ $\Rightarrow \quad x = \frac{54}{3} = 18$

Hence, The three consecutive even numbers are 20, 22 and 24.

8. Let the age of the son be *x* years. Therefore, his father's age = (60 - x) years After 14 years,

Son's age = (x + 14) years Father's age = (60 - x) + 14 = (74 - x) years Now, according to given condition

3(x + 14) = 74 - x $\Rightarrow \quad 3x + 42 = 74 - x$ $\Rightarrow \quad 3x + x = 74 - 42$ $\Rightarrow \quad 2x = 32$ $\Rightarrow \quad x = \frac{32}{2} = 16 \text{ years}$

Hence, son's present age = 16 years, and Father's present age = 60 - 16 = 44 years

9. Let the cost of a chair be ₹x. Then, the cost of a table = ₹(x + 30) Now, according to given condition, 5 × (x + 30) + 2x = ₹990 $\Rightarrow 5x + 150 + 2x = 990$ $\Rightarrow 7x = 990 - 150$ $\Rightarrow 7x = 840$ $\Rightarrow x = \frac{840}{7}$ $\Rightarrow = 120$

Hence, the cost of a chair is $\overline{\mathbf{x}}$ 120 and cost of a table is $\overline{\mathbf{x}}$ 150.

10. Let the denominator of a fraction be *x*. Then, numerator = x - 3

Now, $\frac{(x-3)+1}{x+1} = \frac{2}{3}$ $\Rightarrow \qquad \frac{x-2}{x+1} = \frac{2}{3}$ $\Rightarrow \qquad 3(x-2) = 2(x+1)$ $\Rightarrow \qquad 3x-6 = 2x+2$ $\Rightarrow \qquad 3x-2x = 2+6$ $\Rightarrow \qquad x = 8$ Hence, the required fractions is $\frac{5}{8}$.

11. Let *x* be the age of Sarita's cousine. Then the age of Sarita is x - 14 years.

After 5 years, Age of cousin = (x + 5) years Age of Sarita = (x - 14) + 5= (x - 9) years Now, according to given condition, (x - 9) : (x + 5) = 2 : 3 $\frac{x-9}{x+5} = \frac{2}{3}$ \Rightarrow 3(x - 9) = 2(x + 5) \Rightarrow (By cross-multiplication) 3x - 27 = 2x + 10 \Rightarrow 3x - 2x = 10 + 27 \Rightarrow x = 37 \Rightarrow

Hence, The age of cousin = 37 years The age of Sarita = 23 years

12. Let the third side of a triangle be *x*. Therefore, equal sides will be 2x - 3. Now, perimeter of a triangle = sum of all the three sides $\Rightarrow \qquad 69 = x + (2x - 3) + (2x - 3)$ $\Rightarrow \qquad 5x - 6 = 69$

 $\Rightarrow 5x = 69 + 6$

 \Rightarrow 5x = 75

 \Rightarrow x = 15 cm

Hence, length of sides of a triangle are 15, 27 and 27.

HOTS QUESTIONS

1. Let *x* be number of five-rupee coins. Therefore, number of two rupee coins = 3*x* Now, according to given conditions, ₹(*x* × 5) + ₹(3*x* × 2) = ₹220 ⇒ 5*x* + 6*x* = 220 ⇒ 11*x* = 220 ⇒ $x = \frac{220}{11} = 20$

Hence, number of 5-rupee coins = 20 and number of 2-rupee coins = 60

2. Let the denominator be *x*. Then, numerator is x - 7.

Therefore, the fraction number = $\frac{x-7}{x}$

Now, according to given conditions,

\Rightarrow	$\frac{x-5}{x+9} = \frac{x-7}{x}$
\Rightarrow	x(x-5) = (x+9) (x-7)
	(By cross multiplication)
\Rightarrow	$x^2 - 5x = x^2 + 2x - 63$
	(Cancelling x^2 from both sides)
\Rightarrow	-5x = 2x - 63
\Rightarrow	2x + 5x = 63
\Rightarrow	7x = 63
\Rightarrow	$x = \frac{63}{7} = 9$
	2
Unnco	The required fraction number is -

Hence, The required fraction number is $\frac{1}{9}$.

3. Let the present age of Ajeet be *x* years.
Therefore, the present age of Ajay = (40 - *x*) year.
After 10 years,
Ajeet's age = (x + 10) year

Ajay's age = (40 - x) + 10= (50 - x) years Now, according to given conditions, x + 10 = 2(50 - x) $\Rightarrow \qquad x + 10 = 100 - 2x$ $\Rightarrow \qquad x + 2x = 100 - 10$ $\Rightarrow \qquad 3x = 90$ $\Rightarrow \qquad x = \frac{90}{3} = 30$

Hence, Age of Ajeet = 30 years Age of Ajay = 10 years.

VALUE BASED QUESTION SUMMATIVE ASSESSMENT

Let the property of Mr. Mathews be x. Since, Mr. Mathews gave his daughter and son equal part of the property. *i.e.*, $\frac{1}{4}$ th to each. \therefore Left part of property = $x - \left(\frac{x}{4} + \frac{x}{4}\right)$ $= \left(x - \frac{x}{2}\right) = \frac{x}{2}$ Now, he gave $\frac{1}{3}$ rd of remaining part of property to charity *i.e.*, $\frac{1}{3} \times \frac{x}{2} = \frac{x}{6}$. And rest part of his property he gave to his wife *i.e.*, $\frac{x}{2} - \frac{x}{6} = \frac{x}{3}$. Since, the charity amount is ₹1,00,000. $\therefore \quad \frac{x}{6} = ₹1,00,000 \implies x = ₹6,00,000$. Thus, total amount property = ₹6,00,000 Hence, Mr. Mathews's wife get = ₹ $\left(\frac{6,00,000}{3}\right)$ = ₹2,00,000. "Value of sharing ... helping others ... being charitable"